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A variational principle is proposed that results in a robust elliptic grid 
generator having many of the strengths of original Winslow or 
homogeneous Thompson-Thames-Mastin method (hTTM). The new 
grid generator places grid lines more uniformly over the domain than 
does hTTM, without loss of orthogonality. Numerically generated 
examples are given to demonstrate these effects. Grid quality measures 
are introduced to quantify differences between discrete grids. Both the 
hTTM and the new grid generator can generate folded grids on certain 
pathological regions, but overall they are very robust. Grid weighting 
for solution-adaptive calculations is briefly considered. Generalization 
of the new method to surface and volume grid generation is 
straightforward. cc) 1992 Academic Press. Inc 

1. INTRODUCTION 

Grid generation methods for boundary conforming coor- 
dinates are in widespread use, especially in computational 
fluid dynamics calculations (see, for example, [ 1, 21). The 
present interest is in regular quadrilateral meshes for finite 
difference calculations. In this case, one seeks a mapping 
ML ~1, At, 4)) from the logical space {(t, rl) E CO, 11 x 
[0, 1 ] } to a planar physical domain defined by its bounding 
curves. The mapping should be smooth and have positive 
Jacobian. The Winslow [3] or homogeneous Thompson- 
Thames-Mastin (hTTM) equation [4] is perhaps the most 
robust automatic grid generator. The term robust is applied 
to reflect the fact that it can generate unfolded (one-to-one) 
grids on a wide variety of regions, while “automatic” refers 
to the fact that no arbitrary parameters are required. The 
method is based on the solution of the following pair of 
partial differential equations for the mapping functions x 
and y: 

g22x:c - %12xgrl + g,,x,, =o, (1) 

g22 Yg -2&T,, Ygq + g11 Yqq = 0, (2) 

* This work was partially supported by the National Science Founda- 
tion Grant No. IX-9061 162. 

with 

g,, =x: + Y;, (3) 

g12 =x5x?) + YE Y,, (4) 

g22=x;+y;. (5) 

The equations are generally solved as a Dirichlet 
problem, with boundary values obtained from the physical 
boundaries of the given domain. 

There are several reasons for the popularity of this 
method. First, the homogeneous equations are of elliptic 
type, which guarantees a high degree of differentiability of 
the interior grid. Thus, for example, boundary-slope discon- 
tinuities are not propagated into the interior grid (an impor- 
tant feature not shared by algebraic or hyperbolic grid 
generation methods). Formulation of the grid generation 
problem in terms of an elliptic boundary value problem has 
a second strength, namely, that the interior grid is relatively 
independent of the boundary parameterization. As a result, 
the manner in which points are distributed along the given 
boundary is a secondary consideration. This property 
is a big advantage over grid generation methods which 
are highly sensitive to the positioning of the boundary 
points such as conformal mappings and orthogonal grid 
generators. The latter grid generators are based on ill-posed 
problems in which small changes in the boundary data can 
lead to large changes in the interior solution (and in many 
cases may preclude the existence of any solution at all). 

Yet another strength of hTTM is that no arbitrary 
parameters are used; there is only one solution grid for each 
given region with fixed boundary parameterization. There- 
fore, the method is fully automatic. This is reinforced by the 
fact that the solution grid always exists (since the inverse 
mapping from physical to logical space is the solution of a 
pair of Laplace equations) and generally is one-to-one. 
Thus, hTTM users seldom need to intervene in the grid 
generation process to obtain an adequate grid. 

In spite of the widespread success of the hTTM, some 
criticisms of the method have been made. First, it is well 
known that the solution grid lines are attracted towards 

409 0021-9991/92 55.Gil 
Copyright 0 1992 by Academic Press, Inc. 

All rights of reproduction in any form reserved. 



410 PATRICK M. KNUPP 

interior convexities and repelled from interior concavities. 
In other words, grid lines tend to be non-uniformly placed, 
being concentrated near the boundary in regions of com- 
pression and dispersed in regions of tension. The “non- 
uniformity” property of hTTM is a consequence of the grid 
satisfying Laplace equations on the physical domain [S]. 
Grid uniformity is an essential requirement of a non-solu- 
tion adaptive grid generator in that there is no a priori 
reason to concentrate grid features into a particular portion 
of the given domain. Grid clustering is properly the function 
of a weighted (solution-adaptive) grid generator; such 
weighted systems should adapt away from a uniform grid 
created by a non-adaptive method. 

A second criticism ([6] and others) is that the interior 
hTTM grid frequently lacks orthogonality. This is impor- 
tant because finite difference computations performed on 
non-orthogonal grids generally lead to larger truncation 
errors [7]. Inhomogeneous “P” and “Q” terms are 
introduced as a control mechanism for modifying the 
homogenous grid, but their meaning relative to orthogo- 
nality is unclear. 

A third criticism is that in certain (admittedly rare) cases, 
the grid obtained from solving the discretized equations can 
be folded, i.e., the transformation is not always one-to-one 
(examples of folded grids produced by hTTM are given 
in [S]). The maximum principle has been invoked in 
proofs that the analytic transformation is one-to-one [9]; 
apparently, the discrete equations do not preserve this 
highly desirable property. 

In spite of these drawbacks, the hTTM method is perhaps 
the most widely known automatic grid generation method. 
Most other grid generation methods suffer from at least 
some of the same set of defects listed above (non- 
orthogonality, folded grids produced on highly non-convex 
domains, do not have geometric interpretations) or lack 
automation, ellipticity, or fail to exist except on limited 
classes of regions. In this paper a new method of grid 
generation (referred to as A0 for “area-orthogonality”) is 
proposed. It is a viable alternative to hTTM, having many 
of the strengths of hTTM and in some cases, at least, over- 
comes the latter’s weaknesses. As an added attraction, it has 
ready generalizations to surface and volume grid genera- 
tion. 

2. THE AREA-ORTHOGONALITY GRID GENERATOR 

The area-orthogonality (AO) grid generator is a special 
case of the more general variational grid generation system 
formulated by Steinberg and Roache [lo]. The primary 
feature of the latter is that the variational grid generator is 
posed in terms of mappings x = x(<, q), y = ~(5, q) from the 
logical space to the physical space (in contrast to the 
Brackbill and Saltzman variational method [ 111 which maps 

physical domains to logical space). The main advantage of 
the Steinberg-Roache method over the Brackbill-Saltzman 
is that the former permits direct control over geometric grid 
qualities as smoothness, area, and “orthogonality.” Numeri- 
cal experiments using the Steinberg-Roache equations have 
shown that for difficult domains (such as those which are 
highly non-convex), it is unusual for any single grid quality 
to suffice by itself in generating an adequate grid. For such 
domains one generally employs weighted combinations 
(w,, w,, w,) of smoothness, area, and “orthogonality.” The 
resultant combined functional can be written 

I, = ss ; ; Cw,(s,l+g22)+w,g+w,,g:*ld5dtl (6) 

with 

2 
g= g11 g22 - IT,,. (7) 

The weighted functional I, contains the three parameters 
w,, WC?, and w, which the user must select in order to deter- 
mine the grid. Although such a weighted functional gives 
one considerable flexibility (adequate grids can be obtained 
on most domains through trial and error), it saddles one 
with the chore of choosing the parameters. In contrast, 
hTTM and A0 are automatic. There are dangers in using 
the weighted grid generator blindly; some choices of the 
parameters lead to partial differential equations having 
no solution for the given domain. Full ‘orthogonality” 
weighting (0, 0, 1) is a good example, since it is not possible 
to place orthogonal grids on arbitrary domains, particularly 
if the boundary parameterization is already given. Attempts 
to solve the pure “orthogonality” equations on an arbitrary 
domain will result in convergence failure when using an 
iterative solver. Another only slightly less serious problem 
of the weighted grid generator is that some combinations of 
the weights do not lead to elliptic grid generators. Full area 
weighting (0, 1,0) is a prime example. The resulting grids 
are not necessarily smooth. Considerable effort has been 
expended to find a subset of the full parameter range that 
works well on a wide variety of domains. A mixture of 
smoothness and area (w,, w,, 0) was proposed to obtain 
smooth, unfolded grids [ 123. Several examples were given 
to show that this works reasonably well. Recent theoretical 
work [ 171 demonstrates that this particular combination of 
weights (with w, # 0) results in an elliptic grid generator. 
Although the mixture of smoothness and area is quite useful, 
one still must supply two parameters. 

This work identifies A0 as another useful combination of 
the weights (not previously studied by the authors of [12]) 
which deserves special attention. The combination is dis- 
tinctive for several reasons. First, it results in an elliptic grid 
generator. Somewhat surprisingly, ellipticity is achieved 
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without the use of smoothness. Second, the generator has no 
arbitrary parameters, making it an “automatic” method. 
Third, the resulting grids are generally quite satisfactory, 
giving near-orthogonal and near-equal area grids on a wide 
variety of domains. The grids do not have the well-known 
property of attraction to concavities shared by both smooth- 
ness and hTTM. Finally, the equations are simpler than 
those obtained by the smoothness-area combination and 
require less storage. The method is not a panacea, but 
should be viewed as a useful alternative to hTTM or to 
smoothness-area. 

A reviewer has questioned whether the presently 
proposed A0 method is really “new,” since it is a special 
case of the “known” Steinberg-Roache method of varia- 
tional grid generation. However, Steinberg and Roache 
themselves disagree [lS], noting that their analysis and 
tests of their general formulation, with three independently 
adjustable parameters, gave no suggestion regarding the 
particular features and advantages of the present A0 
method. Furthermore, based on the insight developed from 
their numerical experimentation [12], the A0 method 
would have been rejected a priori [IS]. 

The proposed A0 method is obtained from the combined 
weighting functional I,,, by the triple (0, 4, f). The functional 
is 

There is no straightforward geometric interpretation of this 

The A0 Euler-Lagrange equations have the convenient 

functional; it is halfway between the equal-area grid and the 

form 

“orthogonal” grid resulting from the minimization of gf2. 
A0 is automatic since, like hTTM, there are no arbitrary 

9x=0, 

weights or parameters in the functional. 

(9) 

Yy=O, (10) 

The fully expanded form of the A0 Euler-Lagrange 
equations bears a strong resemblance to the hTTM 
equations: 

Only the cross derivative terms differ from those which 
occur in hTTM. This suggests that the method should share 
many of the properties of hTTM, a fact borne out by the 
numerical experiments described next. 

3. NUMERICAL RESULTS 

3.1. Comparison with hTTM Grids 

Although no mathematical proofs concerning the 
behavior of the A0 method are yet known, numerical 

a 

evidence suggests that a very robust grid generator results 
from the solution of Eqs. ( 12)-( 13). Figures 1,2, and 3 com- 
pare grids generated by the hTTM and the A0 method on 
several difficult domains. A number of other domains were 
tried with similar results, but are not included to save space. 
Visual examination of the figures suggests that A0 grids are 
smooth, as expected from the elliptic operator. This is most 
evident in Figure 2 which involves a domain having a 
boundary-slope discontinuity on the top and bottom boun- 
daries. An especially important observation is that A0 grid 
lines appear to enter concave portions of the domains much 
more so than does hTTM. In general, grid lines in A0 
appear to cover the domain more uniformly than hTTM 
(especially in Figs. 1 and 3). A0 does so without loss of 

with 

a aa a 
~=()5g22~+pl&. 

The resulting partial differential equations are clearly 
elliptic (except in the degenerate cases g,,, g,, = 0). 
This is rather surprising, since they are derived without 
any weighting toward smoothness. Nevertheless, the 
smoothness property of elliptic grid generators is expected 
from solutions to these equations and is verified in the 
computational section to follow. 

581/100/2-I4 

FIG. 1. Comparison of hTTM and A0 on a “house-like” domain. 
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a 

FIG. 2. Comparison of hTTM (a) and A0 (b) on a “V-shaped” 
domain. 

orthogonality; in some cases the overall orthogonality is 
even increased. There is no provision in either method 
for controlling orthogonality on the boundary. This is 
simultaneously a strength and weakness because, by not 
requiring truly orthogonal grids, the problem of computing 
the proper boundary point distribution is avoided. Even on 
the boundary, however, the A0 grid frequently appears 
more nearly orthogonal than the corresponding hTTM 
grid. 

An attempt was made to confirm these visual impressions 
by using quantitative measures. Although it is difficult to 
compete with the information-processing capabilities of the 

b 

FIG. 3. Comparison of hTTM (a) and A0 (b) on a “swan-like” 
domain. 

human eye, a compatible set of quantitative measures can 
confirm or dispute one’s impression and perhaps identify 
grid features overlooked by casual visual assessments. The 
quantitative measures adopted here were carefully selected 
from numerous candidates for their ability to quantify the 
visual impression of Figs. l-3. Since the final product in grid 
generation is a discrete grid, rather than a continuum 
mapping, the measures are based on discrete, rather than 
continuous quantities. The measures adopted here highlight 
grid flaws instead of grid quality because it is easier to detect 
poor features of a given grid than it is to state what con- 
stitutes a “good” grid. Three general types of grid flaws have 
been identified, namely, grids that (i) lack smoothness, 
(ii) have folded cells, or (iii) lack uniformity (of cell areas 
and/or angles). The smoothness property is not quantified 
here, since this is difficult and because the grids that are 
being compared should be smooth according to the theory 
of elliptic operators. Grids having folded cells are easily 
detected by taking the cross-product (in the right-hand 
sense) of any two adjacent cell-side vectors [S]. Let f be the 
unit normal perpendicular to the plane (I$ = i xj). Then, if 
ff . (v I x v2) < 0 for any of the four adjacent cell side-vectors 
(Fig. 4), the cell is considered folded (i.e., not convex). Grids 
with such cells are generally considered unsuitable for com- 
putational purposes. There is no need to apply the following 
uniformity measures to such grids. 

Grid uniformity is more difficult to define, but is impor- 
tant in comparing smooth, unfolded grids. Two discrete 
quantities of interest are the cell areas and the cell angles. 
The areas are computed from A, = $R. [v, x v2 + v3 x v4]. 
Rather than measure the cell angle 0, one can compute the 
deviation of the angle from orthogonality by ~,6 = [n/2 - 81. 
The angle 8 may be computed from the relations 

Vl .vz= Iv1 II lI~*ll cm 6 
I;. (v, x v2) = llv, )I I/v2 11 sin 0. 

FIG. 4. Cell angles and areas used in grid quality measures. 
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TABLE I TABLE III 

Comparison of hTTM and A0 Measures for Fig. 1 Grid Comparison of hTTM and A0 Measures for Fig. 3 Grid 

hTTM angles A0 angles hTTM areas A0 areas hTTM angles A0 angles hTTM areas A0 areas 

Mean 8.0 11.0 0.011 0.011 
SD. 12.7 13.3 0.012 0.004 
Max 72 58 0.072 0.025 

Mean 29.1 19.9 0.007 0.007 
S.D. 20.9 15.1 0.016 0.010 
Max 80 75 0.073 0.066 

A grid having M by N cells contains MN areas and 4MN 
angles, both being fairly large numbers even for small grid 
sizes. It therefore makes sense to study the discrete unifor- 
mity measures in terms of their statistical distribution, i.e., 
their mean, standard deviation, minimum, and maximum. 
Inferior grids will generally have larger means, a larger 
standard deviation, or perhaps a larger outlier indicated by 
the maximum angle-deviation or cell area. Since it only 
takes one or two bad angles to negate an otherwise good 
grid, the maximum angle-deviation is particularly impor- 
tant. Minimum values of the distribution are seldom signifi- 
cant, except when the minimum cell area is close to zero. 

more angles near 45” than does AO. The few A0 angles that 
are 45” are the result of the symmetry requirement imposed 
by the domain, rather than the result of a deficiency of the 
method. Area outliers are less prominent in the A0 grid as 
can be seen in both Table II and the histogram plot. The 
uniformity measures given in Table III exhibit a similar 
pattern on the third domain. 

Tables I, II, and III give the uniformity measures com- 
puted for the grids shown in Fig. 1-3. The mean angle- 
deviation 4 for the domain of Fig. 1 is 8” for the hTTM grid 
and 11’ for the A0 grid. The standard deviations of the 
angle distributions are similar for both methods. From this 
limited information one might erroneously conclude that 
the hTTM grid is superior. However, the maximum (worst- 
case) angle-deviation is 72” degrees for the hTTM grid and 
only 58” for the A0 grid. Furthermore, the area measures 
show the A0 grid to be better, since the area standard 
deviation and area maximum is significantly smaller in the 
A0 grid. The quantitative measures thus reline and confirm 
the visual impression one obtains from Fig. 1, namely that 
the hTTM grid contains excessively large cells on the top 
row of the grid. The area mean is the same for both 
methods, as must be true for any grid on a fixed domain 
with fixed boundary points [ 151. 

A resolution study was undertaken for the first domain 
to observe the behavior of the uniformity measures as 
one approaches the continuum transformation. Results are 
given for the angle-deviation in Table IV and for the cell 
areas in Table V. Both methods fare poorly on reducing the 
maximum angle-deviation measure. Although the mean and 
standard deviation of the angles decreases, the maximum 
angle-deviation (worst-case outlier) does not improve with 
grid resolution. The area-uniformity measures in Table V 
are multiplied by the number of cells (N*) to keep the mean 
constant. With this correction applied, it is apparent that 
the hTTM area standard deviation and area maximum 
increase with increased resolution, whereas they remain 
relatively constant in AO. This indicates that the excessively 
large cells generated in hTTM are not eliminated by 
increased grid resolution. 

3.2. Grid Folding on a Pathological Domain 

Table II compares the grid “metrics” on the “V-shaped” 
domain of Fig. 2. In this example, the A0 angle-deviation 
measures of the mean and standard deviation are smaller 
than those of hTTM. This feature shows up even more 
strongly in Fig. 5, which plots histograms of the grid angle- 
deviation and area distributions for both methods. The 
hTTM angle-deviation histogram contains considerably 

TABLE II 

Comparison of hTTM and A0 Measures for Fig. 2 Grid 

Mean 
SD. 
Max 

hTTM angles A0 angles hTTM areas A0 areas 

28.6 20.6 0.007 0.007 
12.2 9.5 0.003 0.003 
45 45 0.024 0.015 

Both methods appear to be very robust in that the grids 
are not folded even on many highly non-convex domains 
(Fig. 3, for example). However, it is possible to produce 
folded grids using either hTTM or AO. The horseshoe 
domain in Fig. 6 was previously used to show that the dis- 
crete hTTM grid can be folded [8], despite claims to the 
contrary for the continuum mapping [7]. The domain con- 
sists of two concentric ellipses having eccentricity as a 
parameter. The eccentricity is here measured in terms of the 
“aspect ratio” r which is defined as the ratio of the major 
and minor axes. Figures 6a, b, and c were produced by 
hTTM on regions having aspect ratios 4.0, 4.43, and 5.0, 
respectively. In 6a, the hTTM grid is highly non-uniform, a 
prelude to folding. In 6b folding becomes quite evident (at 
r = 4.40, the grid was barely unfolded). A relatively small 
increase in aspect ratio to r = 5.0 (Fig. 6c) results in a 
catastrophic collapse of the hTTM grid lines. This is 
perhaps indicative of ill-possedness or solution bifurcation. 
As noted in [S], an increase in grid resolution raises the 
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hTTM Anglea: 12 x 12 Vee A0 Angles: 12 x 12 Vee 
33. 0 ?O 0 

Angle Deviation 4 (degrees) 

hTTM Areas: 12 x 12 Vet 

r 

Angle Deviation Q (degrees) 

~0 Areaa: 12 x 12 Vee 
0.0 

L 
Area Uniformity Measure 

o.w5 

FIG. 5. Histograms for uniformity measures on the “V-shaped” domain. 

critical aspect ratio, but apparently not fast enough to avoid on the horseshoe domain with an aspect ratio of 50 using 
the possibility of folding even under high resolution. This AO. The solution grids did not undergo catastrophic 
pattern is confirmed in Table VI. collapse as in Fig. 6c even though the grids were folded. 

Figures 6d, e, and f show the corresponding grids It appears from these experiments, at least, that A0 is 
generated by A0 for the same aspect ratios. Even for r = 5.0, more robust to folding than hTTM. However, this is not 
the A0 grid remains unfolded. However, it is quite possible always true. Figure 7a gives an example in which the A0 
for A0 to produce a folded grid. Critical aspect ratios for grid generator gives a folded grid on a domain for which 
A0 are again given in Table VI for the horseshoe region. hTTM has no trouble. Reparameterization of the top 
For a fixed grid resolution, significantly larger aspect ratios boundary in 7b is sufficient to correct the problem in this 
are needed to produce a folded grid using A0 compared to case, but this example shows that A0 is not a solution to the 
hTTM. In addition, 8 x 8 and 16 x 16 grids were computed folding problem. 

TABLE IV TABLE V 

A Resolution Study on the Angle Uniformity Measure A Resolution Study on the Area Uniformity Measure 

hTTM A0 
NxN 

5 
10 
20 
40 

Max SD. Mean Max S.D. Mean 

69 9.1 16.2 65 14.5 16.9 
71 8.4 13.4 58 11.9 14.5 
72 7.6 11.3 62 10.0 11.5 
12 7.9 10.8 71 9.0 10.1 

hTTM A0 
NxN 

Mean S.D. Max Mean SD. Max 

5 1.525 1.025 4.9 1.525 0.525 2.7 
10 1.525 1.525 8.9 1.525 0.600 3.3 
20 1.525 2.000 16.0 1.525 0.800 4.0 
40 1.525 3.200 21.2 1.525 0.800 3.2 
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b 

d e f 

FIG. 6. Comparison of hTTM and A0 folding on a horseshoe 
domain: (a) hTTM, r =4.0; (b) hTTM, r-=4.43; (c) hTTM, r = 5.0; 
(d) AO, r = 4.0; (e) AO, r = 4.43; (f) AO, r = 5.0. 

If one inverts the A0 equations (12)-( 13), by expressing 
them on the physical domain, one does not obtain a Laplace 
equation but rather a very complex nonlinear equation; i.e., 
it is not clear that the maximum principle can be invoked in 
proofs of monotonicity. Considerable theoretical work will 
be needed to account for the robustness of this functional 
and to determine the conditions under which a one-to-one 
transformation can be guaranteed. 

3.3. Weighted Combinations of Area and Orthogonality 

Generalization of A0 to the weighted combination 
(0, w,, MI,,) is not advocated because the Euler-Lagrange 

a 

TABLE VI 

Horseshoe Critical Aspect Ratio vs Grid Resolution 

Critical Aspect Ratio 

Nx N hTTM A0 

2 2.15 2.45 
4 4.55 10.25 
8 4.42 15.36 

16 4.90 18.25 
32 < 5.5 > 20.0 

equations are no longer necessarily elliptic; terms of the 
form (Wt) g,,(Wvl) + (WV) gdWX) appear in the 
operator. However, it can be shown that the condition 
0 < /I < 2 with B = w,/w, guarantees ellipticity. Numerical 
experiments were performed on the horseshoe domain 
(critical aspect ratio of 4.0) for various values of fi, with 
B = 1 giving the basic A0 method. Grid uniformity 
measures for these calculations are given in Table VII. 
Somewhat surprisingly, the angle-deviation measures did 
not decrease monotonically with increasing fl as one would 
expect (since one is moving toward “orthogonality”). The 
optimal /? appears to be near 1.5. 

This behavior is explained by the fact that minimization 
of gT2 does not lead to the “scaled-Laplacian” equations [ 61 
for orthogonal grids, but to another set having a somewhat 
different geometrical meaning. As expected, the area 
measures do decrease monotonically as /I decreases (except, 
of course, for the area mean). Grids produced with p = 0.1 
and 2.5 were folded. 

Although superior grids can sometimes be produced by 
values of the parameter /I other than unity, A0 remains 
a good compromise between area and “orthogonality.” 
Furthermore, A0 is attractive because the automatic 
feature is lost by the introduction of the parameter /I and by 
the fact that folded grids occur with greater likelihood. 
Frankly, in the absence of evidence to the contrary, one is 
loath to depart from p = 1, since the resemblance of the 
Euler-Lagrange equations to the hTTM equations is 
blurred. 

b 

FIG. 7. A folded A0 grid: (a) natural boundary parameterization; (b) stretched boundary parameterization. 
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TABLE VII 

Comparison of Weighted Area-Orthogonality Measures on Fig. 5 
Grid 

Angles Areas 
B 

Mean SD. Max Mean S.D. Max 

0.1 31 19 15 0.129 0.013 0.151 
0.5 31 18 73 0.129 0.040 0.239 
1.0 29 17 68 0.129 0.063 0.316 
1.5 27 16 62 0.129 0.084 0.373 
2.0 28 18 17 0.129 0.104 0.427 

3.4. A0 Performance 

To achieve symmetric grids on symmetric objects, 
Eqs. (12)-( 13) were solved using centered finite difference 
approximations for all the partial derivatives. The difference 
equations were linearized by lagging the first-order coef- 
ficients, with updating occurring every NSMO (number of 
smoothings per coefficient update) Gauss-Seidel sweeps of 
the linearized system of equations. Since the present objec- 
tive is to examine the quality of the grids produced by the 
A0 method, a relatively inefficient linear solver was deemed 
adequate. For production codes, one would want to con- 
sider faster solvers such as multigrid or conjugate gradient. 

In general, for a fixed value of NSMO, approximately 
twice as many coefficient updates were needed to obtain 
iterative convergence to the solution with the A0 method 
than were needed for hTTM. However, for especially 
difficult domains (such as the horseshoe), A0 required 
fewer updates than hTTM. There is a trade-off between 
updating the coefficients and continued smoothing in the 
Gauss-Seidel iteration; if NSMO is too small, too many 
operations are used to calculate updated coefficient arrays; 
if NSMO is too large, too many operations are devoted to 
smoothing with inaccurate coefficients. Therefore, there is 
an optimal (domain dependent) value for NSMO. It was 
found that for convex or nearly convex domains, one does 
not need to update the lagged coefficients as frequently as 
for highly non-convex regions. For the nearly convex 
domains, the optimal NSMO is about 9 to 13. For highly 
non-convex domains, NSMO should be set in the range 3 
to 6. 

Five arrays are required to store the lagged-coefficient 
data in AO, compared to three with hTTM. This is not con- 
sidered a significant storage penalty in view of the apparent 
gain in grid quality. In comparison, nine coellicient arrays 
are needed to implement the full variational method derived 
from (6) and also the method involving weighted combina- 
tions of area and “orthogonality” used in Section 3.3. 

Direct differencing of the Euler-Lagrange equations 
(9)-( 10) was also tried, but with disappointing results. The 
grids produced were nearly identical to those produced by 

differencing the fully expanded equations (12)-( 13), bu 
coefficient updating was required approximately twice as 
much as in the solution of (12t( 13). Further, the approach 
appears less robust in that grid folding occurs foi 
significantly smaller values of the horseshoe critical aspect 
ratio. 

4. WEIGHTED A0 

Solution-adaptive calculations are possible using the A0 
grid generator. This is accomplished by adding a weighting 
function to adapt away from the uniform A0 grid. The basic 
method is put forth in [lo], wherein one weights the 
previous functional by the user-defined weight function 
w( 4, q) defined over the logical space, giving 

Z[x, y] = j; j; ‘+ d( dr/. 

The Euler-Lagrange equations become 

The right-hand side of these equations do not take the 
form of an inhomogeneous “source” term as in the 
inhomogeneous TTM method with its “I”’ and “Q” terms. 

Weighted A0 has the potential of achieving both point 
and line attraction. An example of point attraction is given 
in Fig. 8. 
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The weight used was ~(5, q)=exp(lr2) with 3,=4 and 
r2 = (5 -O.5)2 + (q -0.5)2. 

The weight w can be made more useful by introducing the 
reference space concept used in [lo]. The map a = ~(5, q), 
b = p(c, 9) defines a non-uniform grid on the unit square 
having properties similar to those desired for the grid on the 
physical domain. To form the weight w in (17))( 18), set 
r,,=a:+bi and r,,=cr~+fi~. We take w =,/‘G. 
Details of the derivation are given in [ 10, 131. It is impor- 
tant to note that the reference grid determines the boundary 
point distribution as well as the interior grid. Once the 
reference grid is chosen, boundary points are computed 
from the boundary parameterization and then held fixing 
during the solution of the grid generation partial differential 
equations. 

This approach was used to construct the weighted grids 
in Fig. 9 and 10. Figure 9a shows a uniform reference grid 
(a = 5, b = q) having 40 x 8 cells (i.e., the unweighted case). 
Figure 9b shows the resulting unweighted A0 grid. It is easy 
using the reference space conept to weight the grid toward 
smaller cells near the airfoil surface. Figure 9c shows 
a reference grid with smaller cells on the bottom edge, 
which corresponds to the surface of the airfoil. Additional 
weighting is obtained by concentrating smaller cells near the 
CI = i line, which corresponds to the region in front of the 
leading edge of the airfoil. Figure 9d shows the resulting 
weighted grid in physical space to have the desired charac- 
teristics. 

Figure 10 involves a domain similar to that which might 
occur in calculating flow over a “backstep.” The uniform 
reference grid (40 x 10 cells) in Fig. 10a results in the 
unweighted A0 grid on the backstep shown in Fig. lob. It 
is desired to concentrate points closer to the bottom edge of 
the backstep, so the reference grid in Fig. 1Oc reflects that 

ClI/ / 
’ 

d 

FIG. 9. A0 weighted grid on an “airfoil”: (a) reference grid 
(unweighted); (b) A0 grid (unweighted); (c) reference grid (weighted); 
(d) A0 grid (weighted). 

FIG. 10. A0 weighted grid on a “backstep”: (a) reference grid 
(unweighted); (b) A0 grid (unweighted); (c) reference grid (weighted); 
(d) A0 grid (weighted). 

requirement. Also, points are concentrated to the CI = 0.6 
line in reference space to obtain more grid lines near the 
step. The weighted grid in Fig. 10d is clearly an improve- 
ment over the unweighted grid. 

These examples demonstrate how one can readily adjust 
the reference grid to obtain general features in the physical 
grid. Although the examples do so, one need not be 
restricted to the special case w = a(4) p(q). Alternatively, 
one could use the hybrid Poisson adaptive scheme [ 161 to 
adapt away from the “base grid” obtained from the present 
unweighted method. 

5. SUMMARY AND FUTURE EXTENSIONS 

The examples given show the A0 method to be a viable 
alternative to other grid generation methods. It is fully 
automatic with no scalar parameters to adjust. The com- 
puted grids exhibit elliptic behavior, i.e., discontinuities on 
the boundary do not propagate into the interior and the 
grid is relatively insensitive to the boundary parameteriza- 
tion. The grids exist for a wide range of domains including 
ones that are highly non-convex. These advantages are 
shared with the hTTM method. In addition, A0 may often 
have the following additional advantages: (i) the interior 
grid may be more nearly orthogonal, (ii) the grid lines 
follow and extend into boundary concavities, (iii) the grids 
do not fold on a wide class of domains (as indicated by the 
experiments performed on the horseshoe domain). In addi- 
tion, the A0 method has a useful variational formulation 
which allows easy control of the grid by a weight function 
having a quasi-geometric meaning. 

Finally, from a practical point of view, the strong resem- 
blance of the A0 equations to those of hTTM makes it a 
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relatively simple matter to include A0 within existing grid 
generation software already having an hTTM option. 

Evidence presented here in favor of A0 is mostly numeri- 
cal. In the future, one hopes for mathematical proofs of 
existence and uniqueness of solutions to the set of Eqs. 
(9t( 10). Mathematical results concerning the positivity of 
the Jacobian of the transformation are also highly desirable. 

The author has recently proposed [14] a new grid 
generation methodology for robust surface grid generation 
which is already applicable to hTTM, smoothness, and area 
grid generators. The A0 method has been incorporated as 
well. The relevant equations will be described in a future 
publication. 

The generalization of A0 method to three-dimensional 
volumes is clear. One uses the functional 

The Euler-Lagrange equations for this case reads 2x = 0, 
2’~ = 0, and Yz = 0 with 

Numerical investigations as to the quality of the resulting 
grids are planned for a future publication. 

Finally, the direct variational method of planar grid 
generation [ 151 can also make use of the A0 approach. The 
discrete analogue of the functional (6) is 

F= x(1: + l:,(l: + I:,, 

where the sum is over all grid nodes and the lk are the 
surrounding lengths of the line segments connecting to the 
node. Preliminary experiments with this functional give very 
good results. 
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